Saliency Detection by Multilevel Deep Pyramid Model
نویسندگان
چکیده
منابع مشابه
Deep Edge-Aware Saliency Detection
There has been profound progress in visual saliency thanks to the deep learning architectures, however, there still exist three major challenges that hinder the detection performance for scenes with complex compositions, multiple salient objects, and salient objects of diverse scales. In particular, output maps of the existing methods remain low in spatial resolution causing blurred edges due t...
متن کاملSaliency Detection within a Deep Convolutional Architecture
To tackle the problem of saliency detection in images, we propose to learn adaptive mid-level features to represent image local information, and present an efficient way to calculate multi-scale and multi-level saliency maps. With the simple k-means algorithm, we learn adaptive low-level filters to convolve the image to produce response maps as the low-level features, which intrinsically captur...
متن کاملGroup-wise Deep Co-saliency Detection
In this paper, we propose an end-to-end group-wise deep co-saliency detection approach to address the co-salient object discovery problem based on the fully convolutional network (FCN) with group input and group output. The proposed approach captures the group-wise interaction information for group images by learning a semantics-aware image representation based on a convolutional neural network...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملSaliency Detection by MICCLLR
Saliency detection means detecting visually attractive regions in images. It is an aspect of exploring visual attention from a computer vision. Each image is segmented to get bags. Features are extracted from each bag. Features, including low-, mid-,and high-level, are incorporated into the learning and testing process. They are position, color, texture, scale, center prior, and boundary. From ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Sensors
سال: 2018
ISSN: 1687-725X,1687-7268
DOI: 10.1155/2018/8249180